POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Engineering drawing [S1IMat1>GrafInż]

Course			
Field of study Materials Engineering		Year/Semester 1/1	
Area of study (specialization)		Profile of study general academi	с
Level of study first-cycle		Course offered ir Polish)
Form of study full-time		Requirements compulsory	
Number of hours			
Lecture 15	Laboratory classe 0	es	Other 0
Tutorials 15	Projects/seminars 0	8	
Number of credit points 3,00			
Coordinators		Lecturers	
dr inż. Maciej Berdychowski maciej.berdychowski@put.pozna	an.pl		

Prerequisites

Fundamental knowledge on geometry and stereometry.

Course objective

Mastership of basic principles of image construction of spatial objects on the plane. Training of spatial imagination. Learning the methods and principles of engineering drawing. Practical skills of preparing the technical documentation. Skills of "reading" the engineering drawing.

Course-related learning outcomes

Knowledge:

1. the student recognizes and explains the construction of parts and assemblies of machine elements on the basis of technical drawings and kinematic diagrams [k_w05]

2. the student selects the best graphic methods to be used in a given situation when creating drawing documentation, prepares technical drawings [k_w06]

Skills:

1. the student has the ability to sketch, read and prepare technical drawing documentation

[k_u01,k_u02,k_u05,k_u17]

Social competences:

1. the student follows the adopted rules of engineering graphics - [k_k05]

2. the student is aware of the use of unified drawing rules in order to be understandable within people interested in the transmission of information - $[k_k04]$

3. the student is aware of the role played by the graphic form of communication in the process of technical design - $[k_k05]$

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

- 1. Lecture: written exam
- 2. Exercises: credit based on the completed tasks / exercises.

Programme content

Basics of preparing technical documentation - technical drawing. Projection, cross-sections, dimensioning, normalization in technical drawing.

Course topics

- 1. Introduction, standardization in engineering drawing.
- 2. Projection of 3D objects on the plane of the drawing.
- 3. Presentation of object interior with the use of sectional views, types of sectional views.
- 4. Presentation of object cross-section with the use of revolved section.
- 5. The application of geometrical constructions for drawing the objects.
- 6. Lines of intersection of typical solids.
- 7. Dimensioning.
- 8. Tolerances for production drawings and fits for assembly drawings.
- 9. Geometrical Product Specification.
- 10. Production drawings for shaft and hub. Splines.
- 11. Production drawings for gear wheels.
- 12. Assembly drawings of screw joints and splined connections.
- 13. Simplifications for rolling bearings drawings.
- 14. The principles of drawing welds and welded joints.
- 15. The design of bearing modulus.
- 16. The analysis ("reading") of assembly drawings.

Teaching methods

1. Lecture: multimedia presentation, supplemented with examples given on the board

2. Laboratories: Illustrated teaching boards or multimedia presentations, supplemented with examples on the board; performing the tasks given by the teacher ¬ practical exercises

Bibliography

Basic

1. Dobrzański T., Rysunek techniczny maszynowy, WNT, W-wa 1997.

2. Lewandowski T., Rysunek techniczny dla mechaników, WSiP, W-wa 2009.

3. Bajkowski J., Podstawy zapisu konstrukcji, Oficyna Wyd. Polit. Warszawskiej, 2014 Additional

1. Bober A, Dudziak M., Zapis konstrukcji, PWN, W-wa 1999.

Breakdown of average student's workload

	Hours	ECTS
Total workload	75	3,00
Classes requiring direct contact with the teacher	40	2,00
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	35	1,00